Feature Selection as a Multiagent Coordination Problem
نویسندگان
چکیده
Datasets with hundreds to tens of thousands features is the new norm. Feature selection constitutes a central problem in machine learning, where the aim is to derive a representative set of features from which to construct a classification (or prediction) model for a specific task. Our experimental study involves microarray gene expression datasets; these are high-dimensional and noisy datasets that contain genetic data typically used for distinguishing between benign or malicious tissues or classifying different types of cancer. In this paper, we formulate feature selection as a multiagent coordination problem and propose a novel feature selection method using multiagent reinforcement learning. The central idea of the proposed approach is to “assign” a reinforcement learning agent to each feature where each agent learns to control a single feature; we refer to this approach as MARL. Applying this to microarray datasets creates an enormous multiagent coordination problem between thousands of learning agents. To address the scalability challenge we apply a form of reward shaping called CLEAN rewards. We compare in total nine feature selection methods, including state-of-the-art methods, and show that the proposed method using CLEAN rewards can significantly scale-up, thus outperforming the rest of learning-based methods. We further show that a hybrid variant of MARL achieves the best overall performance.
منابع مشابه
Solving the flexible job shop problem by hybrid metaheuristics-based multiagent model
The flexible job shop scheduling problem (FJSP) is a generalization of the classical job shop scheduling problem that allows to process operations on one machine out of a set of alternative machines. The FJSP is an NP-hard problem consisting of two sub-problems, which are the assignment and the scheduling problems. In this paper, we propose how to solve the FJSP by hybrid metaheuristics-based c...
متن کاملEfficient and distributable methods for solving the multiagent plan coordination problem
Coordination can be required whenever multiple agents plan to achieve their individual goals independently, but might mutually benefit by coordinating their plans to avoid working at cross purposes or duplicating effort. Although variations of such problems have been studied in the literature, there is as yet no agreement over a general characterization of them. In this paper, we formally defin...
متن کاملOnline Streaming Feature Selection Using Geometric Series of the Adjacency Matrix of Features
Feature Selection (FS) is an important pre-processing step in machine learning and data mining. All the traditional feature selection methods assume that the entire feature space is available from the beginning. However, online streaming features (OSF) are an integral part of many real-world applications. In OSF, the number of training examples is fixed while the number of features grows with t...
متن کاملFuzzy-rough Information Gain Ratio Approach to Filter-wrapper Feature Selection
Feature selection for various applications has been carried out for many years in many different research areas. However, there is a trade-off between finding feature subsets with minimum length and increasing the classification accuracy. In this paper, a filter-wrapper feature selection approach based on fuzzy-rough gain ratio is proposed to tackle this problem. As a search strategy, a modifie...
متن کاملAdaptive Management of Air Traffic Flow: A Multiagent Coordination Approach
This paper summarizes recent advances in the application of multiagent coordination algorithms to air traffic flow management. Indeed, air traffic flow management is one of the fundamental challenges facing the Federal Aviation Administration (FAA) today. This problem is particularly complex as it requires the integration and/or coordination of many factors including: new data (e.g., changing w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1603.05152 شماره
صفحات -
تاریخ انتشار 2016